tRNA structure and evolution and standardization to the three nucleotide genetic code
نویسندگان
چکیده
Cloverleaf tRNA with a 75 nucleotide (nt) core is posited to have evolved from ligation of three 31 nt minihelices followed by symmetric internal deletions of 9 nt within ligated acceptor stems. Statistical tests strongly support the model. Although the tRNA anticodon loop and T loop are homologs, their U-turns have been treated as distinct motifs. An appropriate comparison, however, shows that intercalation of D loop G19 between T loop bases 4 and 5 causes elevation of T loop base 5 and flipping of T loop bases 6 and 7 out of the 7 nt loop. In the anticodon loop, by contrast, loop bases 3-7 stack tightly to form a stiff connection to mRNA. Furthermore, we identify ancient repeat sequences of 3 (GCG), 5 (UAGCC) and 17 nt (∼CCGGGUUCAAAACCCGG) that comprise 75 out of 75 nts of the tRNA cloverleaf core. To present a sufficiently stiff 3-nt anticodon, a 7-nt anticodon loop was necessary with a U-turn between loop positions 2 and 3. Cloverleaf tRNA, therefore, was a radical evolutionary innovation essential for the 3-nt code. Conservation of GCG and UAGCC repeat sequences indicates that cloverleaf tRNA is at the interface between a strange RNA repeat world and the first evolution of molecules that fold to assume biologic functions. We posit that cloverleaf tRNA was the molecular archetype around which translation systems evolved.
منابع مشابه
Three phases in the evolution of the standard genetic code: how translation could get started
A primordial genetic code is proposed, having only four codons assigned, GGC meaning glycine, GAC meaning aspartate/glutamate, GCC meaning alanine-like and GUC meaning valine-like. Pathways of ambiguity reduction enlarged the codon repertoire with CUC meaning leucine, AUC meaning isoleucine, ACC meaning threonine-like and GAG meaning glutamate. Introduction of UNN anticodons, in a next episode ...
متن کاملClues to tRNA Evolution from the Distribution of Class II tRNAs and Serine Codons in the Genetic Code
We have previously proposed that tRNA(Gly) was the first tRNA and glycine was the first amino acid incorporated into the genetic code. The next two amino acids incorporated would have been the other two small hydrophilic amino acids serine and aspartic acid, which occurred through the duplication of the tRNA(Gly) sequence, followed by mutation of its anticodon by single C to U transition mutati...
متن کاملEvolution of the genetic code. From the CG- to the CGUA-alphabet, from RNA double helix to DNA
A hypothesis of the evolution of the genetic code is proposed, the leading mechanism of which is the nucleotide spontaneous damage leading to AT-enrichment of the genome. The hypothesis accounts for stability of the genetic code towards point mutations, the presence of code dialects, emergence of stop codons, emergence of the DNA double helix and the symmetry of the genetic code table. The assu...
متن کاملThe evolving tRNA molecule.
The study of tRNA molecular evolution is crucial to understanding the origin and establishment of the genetic code as well as the differentiation and refinement of the machinery of protein synthesis in prokaryotes, eukaryotes, organelles, and phage systems. The small size of the molecule and its critical involvement in a multiplicity of roles distinguish its study from classical protein molecul...
متن کاملSystematic Evolution and Study of UAGN Decoding tRNAs in a Genomically Recoded Bacteria
We report the first systematic evolution and study of tRNA variants that are able to read a set of UAGN (N = A, G, U, C) codons in a genomically recoded E. coli strain that lacks any endogenous in-frame UAGN sequences and release factor 1. Through randomizing bases in anticodon stem-loop followed by a functional selection, we identified tRNA mutants with significantly improved UAGN decoding eff...
متن کامل